A machine learning project focused on classification using the Iris dataset with comprehensive testing and validation frameworks.
project/
│
├── data/
│ └── iris.csv # Single feature classification dataset
│
├── models/
│ └── model.py # Core model implementation
│
├── tests/
│ ├── test_data_validation.py # Data validation tests
│ └── test_model_performance.py # Model performance tests
│
├── requirements.txt # Project dependencies
└── run_model.py # Main execution script
- Core ML: scikit-learn (RandomForestClassifier)
- Data Processing: pandas, numpy
- Validation: deepchecks
- Testing Framework: Custom testing suite
- Python Version: Compatible with 3.x
- Single feature classification task
- Train/test split (80/20)
- Automated data validation checks
- RandomForestClassifier
- Parameters:
- n_estimators: 100
- random_state: 42
-
Data Validation:
- Feature drift detection
- Train/test distribution analysis
- Automated reporting
-
Model Performance:
- Accuracy metrics
- Classification reports
- Confusion matrix visualization
- Feature importance analysis
- HTML reports with:
- Performance metrics
- Visual analytics
- Data distribution insights
- JSON metric storage
- Automated timestamp-based report generation
- Comprehensive error handling
- Automated validation checks
- Performance visualization
- Data drift monitoring
# Install dependencies
pip install -r requirements.txt
# Run model
python run_model.py
# Execute tests
python test_data_validation.py
python test_model_performance.py- Automated model evaluation
- Data drift detection
- Visual performance reports
- Error handling and logging
- Modular architecture
- Add model versioning
- Implement CI/CD pipeline
- Expand feature set
- Add cross-validation
- Implement model explainability
- Real-time accuracy tracking
- Data drift alerts
- Automated report generation
- Performance visualization
Major components are documented with docstrings and inline comments explaining key functionality and usage.