Skip to content

Anas-Altaf/AI-ML-Testing

Repository files navigation

AI-ML Project Analysis Report

Project Overview

A machine learning project focused on classification using the Iris dataset with comprehensive testing and validation frameworks.

🏗️ Project Structure

project/
│
├── data/
│   └── iris.csv           # Single feature classification dataset
│
├── models/
│   └── model.py          # Core model implementation
│
├── tests/
│   ├── test_data_validation.py     # Data validation tests
│   └── test_model_performance.py   # Model performance tests
│
├── requirements.txt       # Project dependencies
└── run_model.py          # Main execution script

🛠️ Technical Stack

  • Core ML: scikit-learn (RandomForestClassifier)
  • Data Processing: pandas, numpy
  • Validation: deepchecks
  • Testing Framework: Custom testing suite
  • Python Version: Compatible with 3.x

🔍 Key Components

1. Data Pipeline

  • Single feature classification task
  • Train/test split (80/20)
  • Automated data validation checks

2. Model Architecture

  • RandomForestClassifier
  • Parameters:
    • n_estimators: 100
    • random_state: 42

3. Testing Framework

  • Data Validation:

    • Feature drift detection
    • Train/test distribution analysis
    • Automated reporting
  • Model Performance:

    • Accuracy metrics
    • Classification reports
    • Confusion matrix visualization
    • Feature importance analysis

4. Reporting System

  • HTML reports with:
    • Performance metrics
    • Visual analytics
    • Data distribution insights
  • JSON metric storage
  • Automated timestamp-based report generation

📊 Quality Metrics

  • Comprehensive error handling
  • Automated validation checks
  • Performance visualization
  • Data drift monitoring

🔧 Setup & Usage

# Install dependencies
pip install -r requirements.txt

# Run model
python run_model.py

# Execute tests
python test_data_validation.py
python test_model_performance.py

💡 Key Features

  1. Automated model evaluation
  2. Data drift detection
  3. Visual performance reports
  4. Error handling and logging
  5. Modular architecture

🎯 Future Improvements

  1. Add model versioning
  2. Implement CI/CD pipeline
  3. Expand feature set
  4. Add cross-validation
  5. Implement model explainability

📈 Performance Monitoring

  • Real-time accuracy tracking
  • Data drift alerts
  • Automated report generation
  • Performance visualization

📝 Documentation

Major components are documented with docstrings and inline comments explaining key functionality and usage.

About

Testing AI/ML Models

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published