appSHNE: The Application of Representation Learning for Semantic-Associated Heterogeneous Networks in Creating Android App Embedding Layers
Paper: https://briggs599.github.io/
- wrote EDA notebook that is callable from command line
- Run EDA with the following command line parameter:
-eda - EDA can be run with the following parameters:
timeandlimitpython run.py -eda -timewill run the EDA and print the time to run it on completion
- Run EDA with the following command line parameter:
- Cleaned old code and adding documentation
- To do:
- Clean up parameters in
config/params.jsonand delete unused parameters - Remove unused methods
- update dockerfile with
nbconvertandpandocto runEDA.ipynbfrom command line - Run EDA on 1000 apps
- Clean up parameters in
- added argument
-logfor the<redirect_std_out>(save console output to log file) parameter - Moved SHNE_code to
srcdirectory
-t,-test,-Test: Run on test set-node2vec,-n2v: Run with node2vec instead of word2vec--skip-embeddings: Skip the word embeddings stage--skip-shne: Skip SHNE model creation final step-p,-parse: Only create node dictionariesdict_A.json,dict_B.json,dict_P.json,dict_I.json,api_calls.json, andnaming_key.json-o,-overwrite: Overwrite previous node dictionaries created when parsing--save-out: Save console output to file-time: time how long to runmain.py
- All outputs will be saved under the values for
<out_path>and<test_out_path>- Subdirectories to save configured in respective dictionary.
- For instance word2vec embeddings will be saved under the path
<save_dir>in the<word2vec-params>dictionary intconfig/params.json
- For instance word2vec embeddings will be saved under the path
- Subdirectories to save configured in respective dictionary.
- All filenames parameterizable