AI-powered customer intelligence engine that transforms product reviews into actionable business insights.
Regeni is an advanced GenAI platform that processes customer review data to generate comprehensive business intelligence across product improvement, innovation opportunities, and marketing positioning strategies.
- 9-Stage AI Analysis Pipeline: Comprehensive analysis from product classification to competitive intelligence
- Multi-language Support: Native processing for English and Chinese markets
- Real-time Processing: Complete analysis in under 5 minutes
- Enterprise Integration: Amazon Q CLI integration with scalable data processing
- Interactive Dashboard: Professional web interface for insight visualization
- Python 3.8+
- Node.js 16+
- Amazon Q CLI access
- Clone the repository:
git clone https://github.com/kangise/regeni.git
cd regeni- Install Python dependencies:
# On macOS/Linux
pip3 install -r requirements.txt
# On Ubuntu, you might need to install pip first
sudo apt update
sudo apt install python3-pip
pip3 install -r requirements.txt- Install Node.js and npm (if not already installed):
# On Ubuntu
sudo apt install nodejs npm
# On macOS (with Homebrew)
brew install node
# Verify installation
node --version
npm --version- Install frontend dependencies:
cd front
npm installError: "vite module not found"
# Solution 1: Clear npm cache and reinstall
cd front
rm -rf node_modules package-lock.json
npm cache clean --force
npm install
# Solution 2: Use specific Node.js version (if using nvm)
nvm use 18
npm install
# Solution 3: Install vite globally (if needed)
npm install -g viteError: Permission denied
# On Ubuntu/Linux, you might need to fix npm permissions
sudo chown -R $(whoami) ~/.npm
# Or use npx instead of npm run
npx viteError: "Module not found"
# Make sure you're using the correct Python version
python3 --version # Should be 3.8+
pip3 install -r requirements.txt- Prepare your data:
python3 preprocess_data.py "data/Customer Reviews.csv" "data/Competitor Reviews.csv"- Run analysis:
python3 run_analysis.py- Start the application:
# Start backend server (Terminal 1)
python3 api_server.py
# Start frontend (Terminal 2)
cd front && npm run dev- Open http://localhost:3000 in your browser
If you're using Amazon Q CLI, run these commands in the Q chat:
# Start backend server in background
nohup python3 api_server.py > backend.log 2>&1 &
# Start frontend in background
cd front && nohup npm run dev > frontend.log 2>&1 &
# Check if services are running
curl http://localhost:8000/reports # Backend health check
curl http://localhost:3000 # Frontend health checkTo stop the services:
pkill -f api_server.py && pkill -f "npm run dev"- Prepare your data:
python3 preprocess_data.py "data/Customer Reviews.csv" "data/Competitor Reviews.csv"- Run analysis:
python3 run_analysis.py- Start the application:
# Backend
python3 api_server.py
# Frontend (in another terminal)
cd front && npm run dev- Open http://localhost:3000 in your browser
The system processes reviews through 9 specialized AI agents:
- Product Classification - Categorizes products using NLP
- Consumer Profiling - Creates detailed buyer personas
- Scenario Mapping - Identifies key use cases
- Motivation Analysis - Uncovers purchase drivers
- Love Point Detection - Extracts customer value points
- Gap Analysis - Identifies unmet needs
- Opportunity Mining - Generates three-dimensional insights
- Sentiment Analysis - Explains rating patterns
- Competitive Intelligence - Benchmarks against competitors
- Backend: Python, Flask, Amazon Q CLI
- Frontend: React, TypeScript, Tailwind CSS
- AI Processing: Custom prompt engineering with context optimization
- Data Processing: Pandas, intelligent JSON extraction
regeni/
├── agent/ # AI agent prompts
├── data/ # Input data and preprocessing
├── front/ # React frontend application
├── results/ # Analysis outputs
├── api_server.py # Backend API server
├── review_analyzer.py # Core analysis engine
├── run_analysis.py # Analysis pipeline runner
└── preprocess_data.py # Data preprocessing utilities
The system can be configured through environment variables or configuration files:
OUTPUT_LANGUAGE: Analysis output language (en/zh)CONTEXT_WINDOW_SIZE: Maximum context size for AI processingAPI_PORT: Backend server port (default: 8000)
GET /reports- List historical analysis reportsGET /report/{id}- Get specific analysis reportPOST /analyze- Start new analysisDELETE /reports/{id}- Delete analysis report
All API responses follow a consistent JSON structure with proper error handling and status codes.
python3 test_pipeline.py
python3 validate_prompts.pyThis project follows PEP 8 for Python code and Prettier for TypeScript/JavaScript.
We welcome contributions! Please see CONTRIBUTING.md for guidelines.
This project adheres to a Code of Conduct. By participating, you are expected to uphold this code.
This project is licensed under the MIT License - see the LICENSE.md file for details.
- Documentation: Wiki
- Issues: GitHub Issues
- Discussions: GitHub Discussions
Built for the WWGS 2025 GenAI Shark Tank competition. Special thanks to the Amazon Q team for enterprise AI capabilities.
