Skip to content

mafima/Summary

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 

Repository files navigation

SUMMARY

  1. Apps - Multicriteria Decision Aids - Java
  2. Apps - Operations Research - Java
  3. Data Science - Association Rules - Python
  4. Data Science - Classification Algorithms - Python
  5. Data Science - Decision Trees - Python
  6. Data Science - Recommender Systems - Python
  7. Data Science - Natural Language Processing - Python
  8. Data Science - Neural Networks - Python
  9. Forecasting - Python
  10. Metaheuristics - Classical - Python
  11. Metaheuristics - Discrete - Python
  12. Metaheuristics - Multiobjective - Python
  13. Metaheuristics - Nature Inspired - Python
  14. Multivariate Data Analysis - R and SPSS
  15. Others - Python

Apps - Multicriteria Decision Aids - Java

Apps - Operations Research - Java

  • J-Horizon : A Vehicle Routing Problem Software. CVRP (Capacitated VRP), MDVRP (Multiple Depot VRP), VRPTW (VRP with Time Windows), VRPB (VRP with Backhauls), VRPPD (VRP with Pickups and Deliveries), VRP with Homogeneous or Heterogeneous Fleet, TSP, mTSP and various combination of these types
  • J-EOQ-SA : EOQ (Economic Order Quantity) for a single product with No Discounts, All Units or Incremental Discounts and with or without Backorders

Data Science - Association Rules - Python

  • Apriori Algorithm : Apriori Algorithm - An Association Rule Learning Over Transactions Databases

Data Science - Classification Algorithms - Python

Data Science - Decision Trees - Python

  • ID3 (Iterative Dichotomiser 3) : ID3 Algorithm - A Decision Tree for Categorical Data with Pruning Methods
  • C4.5 : C4.5 Algorithm - A Decision Tree for Numerical and Categorical Data that can Handle Missing Values and Pruning Methods
  • CART (Classification And Regression Trees) : CART Algorithm - A Decision Tree for Numerical and Categorical Data that can Handle Missing Values and Pruning Methods
  • Random Forest : Random Forest Algorithm - A Decision Tree Ensemble for Numerical and Categorical Data that can Handle Missing Values

Data Science - Recommender Systems - Python

Data Science - Natural Language Processing - Python

Data Science - Neural Networks - Python

Forecasting - Python

  • Forecasting Lessons :
    • Lesson 01 - Introduction to Forecasting
    • Lesson 02 - Time Series Decomposition
    • Lesson 03 - Holt's Method
    • Lesson 04 - Holt-Winters' Method
    • Lesson 05 - Multiple Linear Regression
    • Lesson 06 - Logistic Regression
  • Moving Averages : Calculates the Centered Moving Average (Weighted, Simple or Exponential) of a Time Series
  • Decomposition : Decomposition of Timeseries Using the X-11 Algorithm
  • Holt Method : Calculates the Additive or Multiplicative Holt's Method for Time Series with Trend
  • Holt-Winters Method : Calculates the Additive or Multiplicative Holt-Winters' Method for Time Series with Trend and Seasonality

Metaheuristics - Classical - Python

Metaheuristics - Discrete - Python

Metaheuristics - Multiobjective - Python

Metaheuristics - Nature Inspired - Python

Multivariate Data Analysis - R and SPSS

  • MVDA Lessons (R) - Codes in R available :

    • Lesson 03 - Exploratory Factor Analysis
    • Lesson 04 - Multidimensional Scaling
    • Lesson 05 - Correspondence Analysis
    • Lesson 06 - Discriminant Analysis
    • Lesson 07 - Multiple Linear Regression
    • Lesson 08 - Logistic Regression (Binary)
    • Lesson 09 - Logistic Regression (Multinomial)
    • Lesson 10 - Confirmatory Factor Analysis
    • Lesson 11 - Canonical Correlation
  • MVDA Lessons (SPSS) :

    • Lesson 01 - Introduction
    • Lesson 02 - Scales & Descriptive Statistics
    • Lesson 03 - Exploratory Factor Analysis
    • Lesson 04 - Multidimensional Scaling
    • Lesson 05 - Correspondence Analysis
    • Lesson 06 - Discriminant Analysis
    • Lesson 07 - Multiple Linear Regression
    • Lesson 08 - Logistic Regression (Binary)
    • Lesson 09 - Logistic Regression (Multinomial)
    • Lesson 10 - Confirmatory Factor Analysis
    • Lesson 11 - Canonical Correlation

Others - Python

About

Summary of my Repositories with hyperlinks

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published