Local Learning Engine - A document-first LOCAL LEARNING ENGINE ecosystem for Node.js. Train neural networks from PDFs, DOCX, images, code, and more, all locally without cloud dependencies.
- Document-first: Ingest and train from PDFs, DOCX, HTML, TXT, images, code, emails, ZIPs
- Local-first: No internet required for training or inference
- Advanced Models: ResNet, Transformer, MLP, CNN, RNN implementations
- Optimizers: SGD, Adam, RMSProp, AdamW
- Schedulers: StepLR, CosineAnnealing
- Layers: Dropout, BatchNormalization, Embedding, SelfAttention
- Data Pipeline: DataLoader with batching & shuffling, Dataset manifest
- Loss functions: MSE, MAE, CrossEntropy
- CLI: Command-line interface for ingestion, training, and export workflows
- Cross-language format: Save/load models in
.llev1.1 format
npm install @students-dev/train-lle
# or
pnpm add @students-dev/train-lleimport { Model, MLP, Trainer, Dataset, DataLoader, AdamW, Metrics } from "@students-dev/train-lle";
// Define a simple MLP
const model = new Model(MLP.build({ input: 4, layers: [16, 16], output: 1 }));
// Configure Trainer with AdamW and metrics
const trainer = new Trainer({
optimizer: new AdamW(0.01),
loss: new MSE(),
epochs: 50
});
// Load Data
const dataset = await Dataset.fromCSV("data.csv");
const loader = new DataLoader(dataset, { batchSize: 32, shuffle: true });
// Train
await trainer.fit(model, dataset.inputs, dataset.targets);
// Predict
const prediction = model.predict(new Tensor([1, 2, 3, 4], [1, 4]));
console.log(prediction);
// Save
await model.save("model.lle");import { TransformerClassifier, Trainer, AdamW } from "@students-dev/train-lle";
// Build a text classifier
const layers = TransformerClassifier.build({
vocabSize: 10000,
embedSize: 128,
numBlocks: 2,
classes: 5
});
const model = new Model(layers);
// Train...# Ingest documents
npx train-lle ingest /path/to/documents
# Extract text
npx train-lle extract artifacts.json
# Assemble dataset
npx train-lle assemble-dataset manifest.json
# Train a model
npx train-lle train config.json
# Export model
npx train-lle export output.lleMLP,CNN,RNNResNet,TransformerClassifierDense,Conv2D,Dropout,BatchNormalization,Embedding,SelfAttention
Model: Neural network modelTrainer: Training orchestrator with checkpointsDataset,DataLoader: Data loading and preprocessingTensor: Multi-dimensional array operationsMetrics: Accuracy, MSE, MAEAdamW,StepLR,CosineAnnealing
See examples/ directory for runnable scripts:
examples/tabular/: Regression on synthetic dataexamples/image/: Classification on tiny imagesexamples/text/: Simple text classification
See CONTRIBUTING.md for details.
Apache-2.0